An oscillation-free adaptive FEM for symmetric eigenvalue problems

نویسندگان

  • Carsten Carstensen
  • Joscha Gedicke
چکیده

A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H stability of the L projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P1 finite element methods. In fact, the volume contributions and even oscillations can be omitted for Courant finite element methods. This allows for a refined averaging scheme and so improves [D. Mao, L. Shen and A. Zhou, Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates, Advanced in Computational Mathematics, 2006]. The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence. Numerical experiments exploit the remaining L error contributions and confirm our theoretical findings. The averaging schemes show a high accuracy and the AFEM leads to optimal empirical convergence rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A convergent adaptive method for elliptic eigenvalue problems and numerical experiments

We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines el...

متن کامل

An Iterative Finite Element Method for Elliptic Eigenvalue Problems

We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n e...

متن کامل

A Convergent Adaptive Method for Elliptic Eigenvalue Problems

We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H1. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines e...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

An Adaptive Inverse Iteration Fem for the Inhomogeneous Dielectric Waveguides

We introduce an adaptive finite element method for computing electromagnetic guided waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a given frequency based on the inverse iteration method. The problem is formulated as a generalized eigenvalue problems. By modifying the exact inverse iteration algorithm for the eigenvalue problem, we design a new adaptive inverse iterat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011