An oscillation-free adaptive FEM for symmetric eigenvalue problems
نویسندگان
چکیده
A refined a posteriori error analysis for symmetric eigenvalue problems and the convergence of the first-order adaptive finite element method (AFEM) is presented. The H stability of the L projection provides reliability and efficiency of the edge-contribution of standard residual-based error estimators for P1 finite element methods. In fact, the volume contributions and even oscillations can be omitted for Courant finite element methods. This allows for a refined averaging scheme and so improves [D. Mao, L. Shen and A. Zhou, Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates, Advanced in Computational Mathematics, 2006]. The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence. Numerical experiments exploit the remaining L error contributions and confirm our theoretical findings. The averaging schemes show a high accuracy and the AFEM leads to optimal empirical convergence rates.
منابع مشابه
A convergent adaptive method for elliptic eigenvalue problems and numerical experiments
We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines el...
متن کاملAn Iterative Finite Element Method for Elliptic Eigenvalue Problems
We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n e...
متن کاملA Convergent Adaptive Method for Elliptic Eigenvalue Problems
We prove the convergence of an adaptive linear finite element method for computing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential operators. The weak form is assumed to yield a bilinear form which is bounded and coercive in H1. Each step of the adaptive procedure refines elements in which a standard a posteriori error estimator is large and also refines e...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملAn Adaptive Inverse Iteration Fem for the Inhomogeneous Dielectric Waveguides
We introduce an adaptive finite element method for computing electromagnetic guided waves in a closed, inhomogeneous, pillared three-dimensional waveguide at a given frequency based on the inverse iteration method. The problem is formulated as a generalized eigenvalue problems. By modifying the exact inverse iteration algorithm for the eigenvalue problem, we design a new adaptive inverse iterat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 118 شماره
صفحات -
تاریخ انتشار 2011